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INTRODUCTION 

Coherent anti-Stokes Raman scattering (CARS) spectroscopy has become an 
effective method for analysis and investigation of flames and combustion pro- 
cesses. The theoretical background of CARS and its experimental applications 
have been extensively reviewed (refs 1 through 6). CARS is based on the nonline- 
ar response of a homogeneous medium upon which waves M^ and 0^2 are incident and 
which generates an oscillating polarization. The lowest order nonlinearity is 
the third order susceptibility, y(^)   (-0)3, toi, m^,   -^2) which generates a fre- 
quency component of the polarization at W3 = 2 0)1-0)2 by the process of three wave 
mixing (ref 7). Vibrational resonant enhancement of three-wave mixing occurs 
if 0)^ - 0)2 is made equal to a Raman active vibration, o) , in this way generating 
the CARS signal. Numerous flames have been studied witVi'CARS of No, CO, HT , and 
H2O (refs 2 and 3). 

Depending on the demands of the particular combustion circumstances to be 
studied, CARS can be carried out in several different modes. Normally oio is 
narrowband and scanned to obtain the CARS spectrum at 0)3. However, to obtain 
spectra in transient or turbulent flames, it is appropriate to use a broad- 
band 0)2 [approximately 150 cm 1 full width at half height (FWHH) ] to obtain the 
full rovibrational spectrum at 0)3 within the time duration of the laser pulse 
(-10 ns) (ref 8). 

The CARS experiments can also be carried out in different geometrical modes 
to effect the required phasematching for the coherent process. When o) is split 
to achieve phasematching, it is termed BOXCARS (ref 9). In this case spatial 
resolution is improved since CARS generation occurs only where all three beams 
intersect. In folded (nonplanar) BOXCARS, there is the additional advantage 
that 0) is easily separated spatially from the generating beams (refs 10 and 11). 

BOXCARS has been used to obtain temperature and concentration of post-flame 
gases in stationary flames using broadband (ref 12) and narrow band (ref 13) 
spectra, and in transient flames using single-shot (refs 14 and 15) spectra. 
Recently, broadband N2 and N2O CARS from the reaction zone of a flame has been 
reported utilizing the precisely defined spatial resolution of BOXCARS in the 
direction of the laser beams (ref 16). CARS allows direct monitoring of the 
rovibrational levels of the reactant molecules as they undergo flame reaction 
processes. 

Because of these capabilities, measurement of N2 and CO CARS was undertaken, 
particularly in rich CH^/N20 flames. It is seen that CARS-derived temperature 
and species concentrations agree with standard thermochemical estimates. In 
addition, pure rotational CARS signals were seen from several high-lying H2 rota- 
tional levels, including two previously unobserved lines. The Hp lines seen in 
this work lie in several spectral regions, most notably atop the CO CARS signal 
and in the region of the NO CARS transition. A thorough understanding of these 
H2 lines would not only provide a new and uncomplicated approach to CARS tempera- 
ture diagnostics, but would also clarify observed interferences in CARS spectra 
of hydrocarbon flames. 



EXPERIMENTAL METHOD 

The experimental method is described in references 16 and 17. Briefly, 
nonplanar BOXCARS was utilized to achieve phasematching. The output of a Quanta- 
Ray DCR-IA Nd/YAG laser at 1.06 microns (700 mj) is doubled to generate the pump 
beam at 5320 A (250 mJ) with a bandwidth of near 1 cm~^. The pump beam is sepa- 
rated from the primary beam with prisms. The pump beam is split with a beam 
splitter to generate o) and o) and is used to pump a dye laser to generate the 
Stokes beam, C02. The aye laser consists of a flowing dye cell in a planar Fabry- 
Perot oscillator cavity pumped slightly off-axis by 20 percent of OL with the 
output amplified by an additional dye cell pumped by the remainder or u . For 
the N2 spectra, the dye laser was operated broadband with Exciton Rhodarafne 640 
in dry methanol at a concentration of 2.4 x 10"^ M and 3.2 x 10"^ ^ in the oscil- 
lator and amplifier Jlye cell, respectively, to produce 25 mJ ordinarily centered 
near 6060A (16502 cm~^) with a bandwidth of 125 cm~^. For the CO spectra, the pH 
of the oscillator dye solution was raised by the addition of methanol saturated 
with NaOH. For the investigation of the NO region, Exciton Kiton Red dye was 
used, 130 mg/L of dry methanol for the oscillator and 16 mg/L in the amplifier. 
To achieve BOXCARS geometry, w is again split with another beam splitter to 
generate u^ and MI'. In the optical configuration used to generate nonplanar 
BOXCARS, the ui, ui', and 0)2 beams are parallel and situated on a circle of 0.5- 
inch diameter at the focusing lens (200 mm focal length) with to^ and wi' in the 
central horizontal plane of the lens and 0^2 below uii and (o^' in the central ver- 
tical plane. Telescopes are inserted in the o), and 032 beams to allow the focal 
spot size of both beams to be equalized. The tfelescopes also allow the position 
of the ojj, oj^', and (i)2 beamwaists to be adjusted such that they all intersect 
after focusing. This was achieved with 0.85x and 2x telescopes in oi and OL , 
respectively. P 

To achieve phasematching, a 12.5 mm-thick optical flat, rotatable about its 
horizontal axis, was inserted into 0^2 before focusing. It was adjusted to maxi- 
mize the W3 signal. The beams were recollimated with a 200 mm focal length lens, 
after which 0)3 was located below the plane of w^ and ui^ . w^ and (02 were termi- 
nated with a neutral density filter. 0)3 was focused with a 50-mm focal length 
lens onto the slits of a 1/3-meter monochromator equipped with a 2,400 line/mm 
grating and a 25-micron slit. The signal was detected by a PAR SIT detector and 
processed by a PAR 0MA2 system. Neon lines were used to calibrate the monochro- 
mator. The FWHM of the neon lines nearest U3 were determined to be nominally 2.0 
to 3.5 era  per channel, depending on the experiment. 

Flame measurements were made on premixed CH^/N20 flames maintained on one of 
two circular burners. One burner was 1.8 cm in diameter and its surface was 
constructed of a matrix of steel syringe needles of 0.2 cm o.d. so that a flat 
flame could be obtained under suitable flow conditions. The second burner, of 
similar construction, consisted of two distinct sections: a 2.25-cm-diameter 
inner core area for the flame, constructed of 0.09-cm-o.d. needles and surrounded 
by a 1.0-cra-wide torus composed of 0.13-cm-o.d. needles through which argon could 
be flowed to provide an inert gas sheath for the flame. Matheson technical grade 
methane and chemically pure nitrous oxide were separately flowed through Matheson 
rotameters prior to premixing. The flow through the burner was adjusted accord- 
ing to equivalence ratio and the need for sufficient flow to prevent re-ignition 



in the hotter flames. Equivalence ratio ( cj)) is defined here as the fuel/oxidant 
molar ratio divided by the stoichiometric fuel/oxidant molar ratio. For (j) = 0.5, 
the flow velocity was adjusted to 19.7 cm/s; for (|) = 1.0, 30.2 cm/s; for (j) = 1.2, 
31.5 cm/s; (^ = 1.8, 16.2 cm/s; ^= 2.5, 7.9 cm/s. The center line of the burner 
was placed at the intersection of the u^, oi^', and U2 beamwaists. The burner was 
mounted on horizontal and vertical translation stages. 

RESULTS 

Broadband CO and N^ spectra were obtained at several heights in 0.5, 1.0, 
1.8, and 2.5 equivalence" ratio flames. All these flames were scanned vertically 
along the center line, from a height of 2 mm to 60 mm above the burner surface. 
Spectra similar to those shown in figure 1 for N2 and figure 2 for CO were ob- 
tained for (|) = 1.0, (j) = 1.8, and <()= 2.5 flames at heights of 2 mm, 5 mm, 10 mm, 
20 mm, 30 mm, 50 mm, and 60 mm. 

The spectra shown in the figures and similar spectra taken at other posi- 
tions in the flame allow the determination of temperature and concentration of N2 
and CO. Nn CARS spectra were calculated with the method outlined in references 
17, 18, and 19. The observed CARS spectrum is proportional to the square of the 
modulus of the third order susceptibility, x^"^^ > which is the sum of a resonant 
terra, Xr» related to a nuclear displacement and a nonresonant term, )^i-> related 
to electronic displacement: 

(3) ^   ^ (1) 

The resonant term is calculated as a sum of Lorentzian line shapes of each 
n(J) vibrational/rotational transition which is a function of the number density 
of the resonant molecule, the Raman cross-section, the Boltzman population dif- 
ference, and the isolated linewidth. The calculated jx I ^ ^^ first convoluted 
over the laser lineshapes and then over a triangular slit function. x_ is the 

sura of a real X_' > ^^^  ^^ iraaginary component, X-.''> such that, 

(X^^^)^ = X'^ + 2x'x^^ + X"^ + X^^^ (2) 

x' and x'' display dispersive and resonant behavior, respectively, with respect 
to the detuning frequency, u. = w. - (w - w ), where o). is the frequency of the 
Raraan resonance. As the concentration of trie resonanr species is lowered, the 
cross terra x'X, . which is dispersive, modulates the shape of the spectrum. The 
observation of dispersively modulated spectra allows estimation of the concentra- 
tion in addition to the temperature based on model calculations. More criti- 
cally, both teraperature and concentration can be determined from these molecular 
spectra since in these hot flames the intensities of the higher hot bands of both 
CO and N„ (particularly Ooo i'^ both cases) are sufficiently concentration- 
dependent to allow both these variables to be modeled (ref 17). Observation of 
hot bands allows least-squares fitting of the calculated and experimental 0 peaks 
maxima to give temperatures to ±100 K and concentration to ±10% absolute, based 



on replicate determinations. The spectrum shown in figure 1 was obtained at 2 mm 
above the burner in an unshielded <}) = 1.0 flame. The temperature and concentra- 
tion calculated for this flame were 3000 ± 100 K and 50% ± 5% No. The tempera- 
tures seemed to cool gradually, probing up the flame, with the N2 concentration 
stable at 48% to 52%. At a height of 50 mm above the burner head, the tempera- 
ture cooled only to about 2900 K. The temperature and concentration obtained 
from thermochemical calculations (ref 20)—2920 K and 51% N2 for this flame—are 
within the error of the experimentally determined values. 

In addition, to confirm the temperature and concentration measurements de- 
rived from N2 CARS, measurements were taken with CO CARS in the same unshielded 
CH^/N20 flames. A CO CARS spectrum for a cf) = 2.5 shielded flame, shown in figure 
2, is an example of CO CARS diagnostics. The CO CARS-derived data for the (f) = 
1.0 flames (T = 3100 K, C = 8%) are consistent with the thermochemical data (T = 
2920 K, C = 7.2% CO) and with the N2 CARS data. However, for the ^= 2.5 flame, 
shown in figure 2, the derived temperature and concentration values (T = 2550 K, 
C = 16% ± 1.6% CO) are actually hotter than the thermochemical data. This dis- 
crepancy for the rich (() = 2.5 flames is discussed below. In summary, for the 1.0 
flame, temperatures and concentrations were measured as 3100 K, 50% N2 and 8% CO 
at 2.0 mm above the burner surface, cooling only slightly to 3000 K going up the 
flame even as high as 60 mm above the burner head. N^ concentration increased 
only to 55% at 50-mm height, whereas by 20 mm above the burner, the CO signal had 
dropped below detection limits into the nonresonant background. 

It was seen that for the cj) = 1.8 flame, both N2 and CO CARS measurements 
approached the thermochemical predictions on species concentrations (CO = 16%, N« 
= 42%, T = 2734), even given the interaction of these rich flames with room air 
in this unshielded burner. At 2 ram above the burner head, N2 CARS measured a 
temperature of 2600 K and 42% concentration. CO CARS, neglecting a sharp spike 
on the (1,0) CO peak, measured 2600 K and 8% CO. The N2 concentration remained 
at 42% with a consistent temperature measurement near 2600 K even through the 
height of 60 mm. It was difficult to measure CO in this flame at heights greater 
than 30 mm above the burner. 

CARS measurements on the (j) = 2.5 flame at 2 mm above the burner surface gave 
concentrations close to calculated (20%, CO, 35% N2) but the observed tempera- 
tures, 2400 K to 2500 K, were somewhat hotter than calculated (2252 K) since the 
flame was, in fact, considerably leaner than 2.5 due to admixture with ambient 

02- 

Except for use with rich flames such as the (j) = 2.5 flame, temperatures near 
to those which the calculations predict were seen in both of the burners which 
were used in these experiments. In fact, for the burner which was used only to 
compare shielded and unshielded flame behaviors, flames run at flows identical to 
those used with the first burner showed temperatures several hundred degrees 
below thermochemical predictions. At these flows, temperatures in this burner 
for (J) = 1.8 flames, for example, seemed to stabilize at 2300 to 2400 K. It is 
assumed that this burner exhibited substantial heat gain to its large burner 
head, necessitating the use of higher flow rates than used in the primary burner 
to raise the reaction zone. 



During the course of obtaining the above temperature and concentration pro- 
files for the various CHA/NJO flames with vibrational CARS spectra, several in- 
tense and narrow peaks were seen. These appeared in marked contrast to the broad 
rovibrational CO and N2 transitions and exhibited a strong dependence on flame 
stoichiometry and, in at least one case, on the probed position within the flame. 

The CARS spectrum in the CO spectral region of several CHA/N2O flames, rang- 
ing from a rich (j) = 2.5 flame to a <}) = 1.2 flame, is shown in figure 3. In these 
spectra, the (1,0), (2,1) and (3,2) vibrational bands of CO can be seen superim- 
posed on the nonresonant CARS background. In addition, at Av = 2131 cm~ , super- 
imposed on the (1,0) CO peak is a sharp peak whose linewidth seems to be instru- 
ment limited. This sharp "spike" dominates the spectrum for the fuel-rich flames 
and becomes less intense as the flame ratio approaches stoichiometric. The line 
intensity is not proportional to the square root of CO concentration, being more 
dependent than CO itself on flame stoichiometry. As is indicated above, reasona- 
ble agreement with thermochemical calculations for temperature and concentration 
of CO can be obtained only by attributing this peak to a species other than CO, 
with its position atop the CO (1,0) peak fortuitous. 

In fact, this 2131 cm" peak has previously been observed (refs 21, 22, and 
23). Klick et al (ref 23) attribute it to an (11,9) pure rotational transition 
of ground state Ho. Its behavior with respect to flame stoichiometry (and thus 
directly, with H^ concentration) is documented below. 

The CARS spectrum in the NO spectral region of several CH^/N20 flames, rang- 
ing here from a rich (j) = 2.5 flame to a lean (}> = 0.5 flame, is shown in figure 
4. In none of the spectra was NO itself seen, but superimposed on the background 
nonresonant CARS signal were two narrow (linewidth limited by instrument resolu- 
tion) peaks. The higher energy peak, at Av = 1809 cm~^, behaves similarly to the 
peak seen in the CO region: it is very intense in the rich flames and decreases 
in intensity as the flame is made leaner. The normalized intensity behavior 
which is nearly proportional to the square root of Ho concentration is tabulated 
and compared in table 1. The Av = 1714 cm~^ peak maintains a nearly constant 
normalized intensity relative to the nonresonant signal independent of flame 
stoichiometry. As discussed below, these peaks are also assigned as due to pure 
rotational H2 CARS. 

The signal from these narrow peaks was more intense in the NO region than in 
the CO region. That these peaks result from a CARS signal is obvious from the 
clear, typical CARS modulation seen in the Av = 1809 cm~^ narrow peak in every 
spectrum in the NO region. Even in the (}) = 0.5 flame, where the peak itself is 
almost diminished into the noise, the typical CARS modulation is still appar- 
ent. This modulation on the H2 peak cannot be seen as readily in the CO region, 
though on closer inspection and comparison of the different stoichiometric spec- 
tra, it can be discerned in this region as well. 

In addition, because of the critical role N2 CARS plays in flame temperature 
and concentration diagnostics, it is important to point out the possible observa- 
tion of a narrow peak at 2298 cm , almost centered atop the N2 (2,1) hot band. 
Though such narrow structure is characteristic of N„ CARS in hot flames, where 



intensity enhancement due to overlap between a high V'' = 0 to v' =1 rotational 
transition and a low v" = 1 to v' = 2 rotational transition is predicted (ref 
18), the persistence and high intensity of this narrow peak above the theoretical 
low-resolution plots in several spectra should not be overlooked. N^ is the most 
commonly employed molecule in CARS diagnostics, and in these diagnostics the 
(1,0): (2,1) intensity ratio is critical for temperature and even concentration 
determinations. Any interference in the (2,1) peak intensity by a second species 
might consequently make erroneous any temperature/concentration measurements 
based on the (2,1): (1,0) N2 ratio if its presence were not accounted for. 

The possibility of a transition occurring at Av = 2298.5 cm"^ transition is 
the most difficult to fully assess. Because of its low intensity, and because of 
the clear J-structure of the N2 vibrational bands, this line could be mistaken 
for N2 rotational structure. Figures 5 and 6 show two spectra of No of a <}) = 1.8 
flame at an experimental and calculated resolution of 2.0 cm~^ as well as a 
matching spectrum for each calculated with a resolution of 1.0 cra"'^. 
(The W2 profiles for these two spectra were quite different.) Figure 5 is calcu- 
lated at 2400 K, 36%, while figure 6 is calculated with 2300 K, 37.5% N2. It is 
seen that a sharp peak stands out above the unresolved rotational structure in 
the 2.0 cm resolution case in the former examples, though it is not as evident 
in the latter example and is masked altogether in the high resolution plots and 
could be mistaken for a strong J-line or a superposition of several J-lines. 
High resolution (better than 0.1 cm~^) calculations can be performed for Nn at 
several temperature/concentration combinations, and at no reasonable set of con- 
ditions does only one rotational line near 2298.5 cm"^ or only one superposition 
of rotational lines show a marked intensity enhancement over all the other lines 
or superposition of lines. The (2,1) band itself actually appears as a double 
peak even at low resolution; at higher resolution, the prominent rotational lines 
and combinations which contribute to that double-headed structure are obvious. 
Rut even after the low resolution of the experiment conceals the other rotational 
structure, a narrow peak is still apparent. As seen in figure 7, this is even 
more marked in the untreated data. From energy level calculations, at 2298.5 
cm this narrow line is accidentally degenerate with one of the most intense 
combinations of rotational lines in the region of the (2,1) N, hot band 
transition for the flame conditions tested. 

It was also important in these experiments to determine the effect of an 
argon shield on the flames which were tested. With the second burner, the most 
obvious result of flowing argon through the torus surrounding the flame was to 
effectively create a Smithells separator, even to the naked eye separating the 
inner and outer cones of the flame. That is, the argon flow prevented the infu- 
sion of room air into the flame until about 60 mm upstream, effectively lifting 
the outer cone or the outer diffusion flame where the excess oxidizable constitu- 
ents would otherwise burn in air. This is borne out in the derived CARS data for 
both N2 and CO in both cj) = 2.5 and (j) = 1.8 flames. Just above the burner head, 
before room air can mix with the flame in even the unshielded case, both the 
shielded and unshielded flames exhibit essentially the same temperature and con- 
centration, 2250 K, 12% CO, 50% No for <f. = 2.5; 2500 K, 12% CO, 45% N2, for ^ = 
1.8. Along the center line, this behavior is seen up to a height above the burn- 
er head of 10 ram.  Above this height, for the unshielded burner, room oxygen 



apparently mixes with these rich flames to produce a flame hotter than the 
shielded flame, with increased N^ and decreased CO concentrations going up the 
center line. For <}> = 2.5 flames in the unshielded burner, the CO concentration 
drops to 7% at 2550 K at 10 ram height. Under identical conditions but with the 
added argon shield, flame analysis yields CO temperature = 2000 K and a CO con- 
centration of 12%. By 30 mm, CO concentration drops below our detection limit in 
the unshielded flame, while in the shielded flame the CO concentration is main- 
tained above 10% through a height of at least 60 mm. These differences are only 
somewhat less marked for the (() = 1.8 flame. With this insight, experimentation 
was carried through predominantly on the unshielded flames. 

DISCUSSION 

CARS measurements were carried out on two different burners. In the first 
burner, which had no capability for shielding the flame, temperature and concen- 
tration were obtained from both N2 and CO to characterize the post flame region 
of the (j) = 1.0, 1.8, and 2.5 flames. The second burner, which could be run with 
or without an argon shield, was used only to compare shielded with unshielded 
flame characteristics. 

Using the first burner, in each of the ^ = 1.0, 1.8, and 2.5 flames, N2 and 
CO temperatures were consistent to within *100 K, the estimated experimental 
error. In the <() = 1.0 flame, the concentration of both N2 and CO are in agree- 
ment within experimental error with the results of thermochemical calculations 
(ref 20). Agreement with the thermochemical calculations is attained by adjust- 
ing the flow to displace the reaction zone above the burner surface such that 
heat loss is minimized without inducing turbulent effects. In the (j)= 1.8 flame, 
agreement of the temperature with the thermochemical calculations cannot be ex- 
pected since room air will enter into the flame reactions. This is even more 
marked in the still richer (j) = 2.5 flame. For the (j) = 1.0 and 1.8 flames, the 
measured temperatures are slightly lower than the calculated temperatures (the 
rich (|) = 2.5 flame measures with CARS hotter than thermochemical calculations 
predict) while the concentrations of both N2 and CO along the centerline are 
close to their equilibrium values. These measurements serve to characterize the 
post-flame conditions under which the narrow resonances at Av = 2131 cm~^ in the 
CO CARS region, and at Av = 1809 cm"-'- and Av = 1714 cm"^ were observed. 

Isolated narrow peaks, which appeared in marked contrast to the typical 
broad rovibrational spectra, were seen in several frequency ranges. The peaks at 
1809 cm" and at 2131 cm" were the most prominent, and efforts at identification 
and documentation of behavior concentrated on these. To characterize these 
peaks, spectra were taken at (j) = 0.5, 1.0, 1«2, 1.8, 2.5, and 3.0. The normal- 
ized intensities of the transitions at 2131 cm~^ and at 1809 cm" , given in table 
1, increased in going to richer flames nearly in proportion to the square root of 
the increase in the H2 concentration obtained from the thermochemical calcula- 
tions (also listed in table 1). The ratio of the intensities of the two transi- 
tions was nearly constant. The peak at 2131 cm~l had previously been observed 
(refs 21, 22, and 23) and attributed to H2 (ref 22), so it was sensible to inves- 
tigate whether all the narrow peaks were due to pure rotational H2 CARS.  The 



positions of the pure rotational transitions were calculated from the spectro- 
scopic constants of Fink et al (ref 24). These constants closely fit the first 
four H^ rotational lines observed by Stoicheff (ref 25) in the photographic Raman 
at room temperature. Higher rotational H2 levels are not known to have been 
reported._ Rotational levels in the ground vibrational state are calculated at 
1816.8 cm for the (9,7) S-transition [here, as will be the notation for all the 
S-tvpe pure rotational transitions, of the form (J', J")] and 2133.3 cm"l for 
the (11,9) S-transition (the latter, as had previously been assigned). These are 
in close agreement with the observed transitions at 1809 cm"^ and 2131 cm"^. In 
addition, in the first excited vibrational state of H2, the (9,7) S-type rota- 
tional transition is calculated at 1720.8 cra"^ in agreement with the observed 
transition at 1714 cm . The lower ratios of the normalized Intensity of the 
1809 cm transitions, relative to the 2131 cm~^ transition for the (}> = 1.8 and 
2.5 flames, reflect the lower temperature in these flames. The temperatures in 
the <|) = 1.8 and 2.5 flames are similar in the unshielded burner due to the effect 
of room air on the flame reactions. The relative constancy of the normalized 
intensity of the 1714 cm ^ peak may be due to the decrease of the first excited 
vibrational state population with lowering temperature as H„ concentration in- 
creases with increasing (|). 

The narrow peak observed in several spectra at Av = 2298.5 cm~l cannot be 
2lated with an H2 transition.  Using these constants, the (10, 12) H^ S- 

rotational (ground state vibrational level) transition is predicted to lie at  „^       ^^^„„„„       „^^cv,        . J. L^,.<nL. j.vyi.ia.j.       J.v:;vc:-L/        u 1-dlia X u XUll       XS       [JieUJ-CLCa      UO       J.ie      at 

2288.8 era in the vicinity of the N2 (v' = 2, v" 1) hot band, approximately 10 
cm from the observed peak. This line would be more difficult to find than the 
other H2 S-rotational transitions. The intensity of the N2 signal from these 
flames would be expected to swamp the H2 (10,12) S-rotational line but this line 
would appear still less intense than the other H2 rotational lines for two other 
reasons as well. First, the nuclear statistics for the H2 molecule result in a 
threefold decrease in the populations of the even H2 rotational levels with re- 
spect to the odd levels. Second, from a simple Boltzman analysis, the population 
of the v" = 10 level would be diminished by a further factor of 1.7 with respect 
to the v" = 9 level at 2500 K relative to the (11,9) S-transition. Since inten- 
sity varies as the square of the population in CARS, this line would be expected 
to be perhaps 5% of the intensity of the stronger Hj lines. As is explained 
below, it would be difficult to detect this line unless it were fortuitous en- 
hanced by an energy degeneracy with N2 rotational lines, which would be possible 
at these flame temperatures throughout the N2 CARS region. 

Even at only moderate resolutions, the (2,1) N2 vibrational band, in calcu- 
lated spectra, appears with marked structure, often double-headed (ref 17). This 
structure at these flame temperatures is due not only to the general crowding of 
rotational O-transitions from high-lying rotational levels of v" = 0 with tran- 
sitions from lower .I-levels of v" = 1, but also in particular to the degeneracy 
of certain of these N2 transitions. Specifically, the (v" =0, J" = 48) and 
the^(v" = 1, J" = 26) No Q-lines at Av = 2289.01 cm"^ are separated by 0.007 
cm , and the (0.42) and (1,12) O-transitions near Av = 2298.54 cm"^ are sepa- 
rated by 0.30 cm ^. Even at 1.0 cm ^ resolution, these near degeneracies show up 
as apparently enhanced, single-rotational transitions above the remainder of the 
more regular rotational structure.  The narrow peak possibly observed in these 



experiments appears at our resolution to be accidentally degenerate with the 
higher energy pair of these N2 lines. It is this degeneracy which creates the 
difficulty in establishing a definitive observation of this narrow peak. If this 
peak is due to the presence of a second species and not to some error in the 
calculated fits, there is a triple enhancement of intensity in a narrow frequency 
range between a second species transition and N2 rovibrational CARS transitions. 

As seen in figures 5 and 6 which show two (j) = 1.8 spectra of resolution = 
2.0 cm" and matching calculated spectra of resolution 1.0 cm~^ at T = 2400 K, C 
= 36% N2 in figure 5 and T = 2300 K, C = 37.5% for figure 6, it is difficult to 
design reasonable conditions which would account for the enhanced intensity of 
the spike near 2898 cm" without suggesting the possibility of a contribution by 
a species other than N/,. There is no apparent reason why any one or few adjacent 
(or overlapped) N2 rovibrational lines in that region—either from v' ' = 0 or 
from v'' = 1— would show such anomalous intensity that only one strong spike 
would appear even above the smooth unresolved rotational envelope at the 2.0 cra'^ 
resolution in several different observations. Nor is there any particular crowd- 
ing of rotational lines in a limited frequency region, except the near degenera- 
cies mentioned above. 

Figure 7 shows a spectrum in a ^ = 1.8 flame (taken broadband with a single 
laser dye) showing CARS signals from n^, CO, and H2. Averaging out the Irregu- 
larity in the N2 (2,1) band, N2 and CO CARS calculated using this spectrum give 
consistent measurements on this flame, with CO CARS giving a CO concentration of 
13%, N2 CARS showing 39% N2, a CO-CARS-derived temperature = 2500 K and a N^- 
derived CARS temperature = 2450 K, all consistent with thermochemical calcula- 
tions. 

CONCLUSION 

For rich CH^/N20 flames, N2- and CO-CARS provide specles-to-species confir- 
mation of experimentally-derived flame temperature/concentration data. Moreover, 
observation of previously unobserved H2 rotational lines in a wide range of fre- 
quencies might provide additional third-species confirmations as well as a direct 
probe of flame temperatures and concentrations by a simple readout of narrow 
rotational line intensity ratios (with the proper dye intensity correction fac- 
tor). For quick order of magnitude calculations, this might be a satisfactory 
adjunct to the current method of calculating complete rovibrational molecular 
spectra to determine flame temperature and concentration. 
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Table 1.  Variation of the intensity of hydrogen rotational transition 
with hydrogen concentration 

Frequency (cm  ) 

2131 

1809 

I2131/I1809 

H2 concentration (%) 

Normalized intensity* 
Equivalence ratio (0) = 1.2 1.2 1.8 2.5 

0.37 0.74 1.20 

0.80 1.80 2.90 

0.46 0.41 0.41 

5.6 16.7 31.6 

Normalized intensity = (I - Inr)/lnr 
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Figure 2.  Experimental points and calculated spectrum (solid line) for a CO CARS 
signal for a cj) = 2.5 CH^/N20 flame, probe height = 2 mm; calculated 
variables used were T = 2550 K and concentration = 16%. 
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Figure 5.  N2 CARS spectrum in cfi = 1.8 flames with calculated spectra of 2.0 and 
1.0 cm"*- resolution; calculated parameters: T = 2400 K and C = 36%.  Note experi- 
mental spike at 2298 cm~l. 
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Figure 6.  N2 CARS spectrum in (}) = 1.8 flames with calculated spectra 2.0 and 
1.0 cm~l resolution; calculated parameters: T = 2300 K and C = 37%, 
Note the experimental spike at 2298 cm~^. 
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N2 CARS and two H2 CARS lines.  Calculations on this spectrum show 
39% N2, 13% CO, 2500 K for CO temperature, 2500 K for N2 temperature. 
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